Optimized data analysis pipeline for MALDI MSI based tumor typing from FFPE tissue samples evaluated on six benchmark classification tasks D. Lachmund¹, J. von Schröder¹, T. Boskamp^{1,2}, L. Hauberg-Lotte¹, J.H. Kobarg², S.O. Deininger³, K. Kriegsmann⁴, M. Kriegsmann⁴, R. Casadonte⁵, J. Kriegsmann⁵, P. Maaß^{1,2} **ASMS 2019, MP 340** ¹University of Bremen, Bremen, Germany ²SCiLS, Bremen, Germany ³Bruker Daltonik, Bremen, Germany ⁴University of Heidelberg, Heidelberg, Germany ⁵Proteopath, Trier, Germany ## Goals - Develop optimized pre-processing pipeline for MALDI MSI based tumor typing - Consider different clinical tumor typing and subtyping tasks - Consider intra- and inter-lab scenarios and different instrument types Non-linear **intensity profile normalization** (IPN, bottom row) improves comparability across different acquisitions (Boskamp et al, ASMS 2018) Mild Gaussian kernel **spatial denoising** (right) increases signal-to-noise ratio as compared to original data (left) 370 872 874 1464 1466 1468 1470 1472 2196 2198 220 **Dimensionality reduction** by downsampling to peak areas over 0.4 Da intervals (Boskamp et al, ASMS 2018) Data m/z range Normalization Alignment Spatial denoising Downsampling Normalization Transformation Classification Benchmark panel acquired from 25 TMAs,2031 cores and 1410 patients total | Task | Instrument | Description | |---------------|------------|--| | Antalya | autoflex | Four tumor entities, 8 TMAsLung, pancreas, colon, breast | | Bruker MTT | rapiflex | Six tumor entities on one TMA Five measurements in four labs Training and test data from different SOP's | | Lx ADSQ | autoflex | Eight TMAs with mix of adeno-
and squamous cell carcinoma,
afx | | MDP afx inter | autoflex | Breast, ovary tumors, 5 TMAs Measured in two labs Inter-lab cross-validation | | MDP afx intra | autoflex | Same as above, but intra-lab cross-validation | | MDP rfx | rapiflex | Breast, ovary tumors, 5 TMAsSingle lab | **Reducing mass range** for feature selection down to 700 ... 2000 m/z increases robustness and speed without affecting accuracy Logarithmic transform with appropriate scaling results in more symmetric intensity distributions – beneficial for subsequent LDA classification - Balanced accuracy 82% and 92% - Performance gain over baseline (TIC only) 9.5 ... 39.8% pts. for five of six tasks - Mass alignment / downsampling alone yields 5 ... 18.5% pts. for five of six tasks ## Conclusion - Systematic investigation of six benchmark problems yields an optimized pre-processing pipeline for MALDI MSI tumor typing applications - Significant performance gains achieved in intra- and inter-lab scenarios - Improved robustness towards SOP variations and technical variability Imaging MS