Optimized data analysis pipeline for MALDI MSI based tumor typing from FFPE tissue samples evaluated on six benchmark classification tasks

D. Lachmund¹, J. von Schröder¹, T. Boskamp^{1,2}, L. Hauberg-Lotte¹, J.H. Kobarg², S.O. Deininger³, K. Kriegsmann⁴, M. Kriegsmann⁴, R. Casadonte⁵, J. Kriegsmann⁵, P. Maaß^{1,2}

ASMS 2019, MP 340

¹University of Bremen, Bremen, Germany ²SCiLS, Bremen, Germany ³Bruker Daltonik, Bremen, Germany ⁴University of Heidelberg, Heidelberg, Germany ⁵Proteopath, Trier, Germany

Goals

- Develop optimized pre-processing pipeline for MALDI MSI based tumor typing
- Consider different clinical tumor typing and subtyping tasks
- Consider intra- and inter-lab scenarios and different instrument types

Non-linear **intensity profile normalization** (IPN, bottom row) improves comparability across different acquisitions (Boskamp et al, ASMS 2018)

Mild Gaussian kernel **spatial denoising** (right) increases signal-to-noise ratio as compared to original data (left)

370 872 874 1464 1466 1468 1470 1472 2196 2198 220

Dimensionality reduction by downsampling to peak areas over 0.4 Da intervals (Boskamp et al, ASMS 2018)

Data

m/z range

Normalization

Alignment

Spatial denoising

Downsampling

Normalization

Transformation

Classification

Benchmark panel acquired from 25 TMAs,2031 cores and 1410 patients total

Task	Instrument	Description
Antalya	autoflex	Four tumor entities, 8 TMAsLung, pancreas, colon, breast
Bruker MTT	rapiflex	 Six tumor entities on one TMA Five measurements in four labs Training and test data from different SOP's
Lx ADSQ	autoflex	 Eight TMAs with mix of adeno- and squamous cell carcinoma, afx
MDP afx inter	autoflex	 Breast, ovary tumors, 5 TMAs Measured in two labs Inter-lab cross-validation
MDP afx intra	autoflex	 Same as above, but intra-lab cross-validation
MDP rfx	rapiflex	Breast, ovary tumors, 5 TMAsSingle lab

Reducing mass range for feature selection down to 700 ... 2000 m/z increases robustness and speed without affecting accuracy

Logarithmic transform with appropriate scaling results in more symmetric intensity distributions – beneficial for subsequent LDA classification

- Balanced accuracy 82% and 92%
- Performance gain over baseline (TIC only)
 9.5 ... 39.8% pts. for five of six tasks
- Mass alignment / downsampling alone yields
 5 ... 18.5% pts. for five of six tasks

Conclusion

- Systematic investigation of six benchmark problems yields an optimized pre-processing pipeline for MALDI MSI tumor typing applications
- Significant performance gains achieved in intra- and inter-lab scenarios
- Improved robustness towards SOP variations and technical variability

Imaging MS