

MBT Filamentous Fungi Library

MALDI Biotyper®

For research use only. Not for use in clinical diagnostic procedures.

Innovation with Integrity

MALDI-TOF

MALDI Biotyper®

Tackle the filamentous fungi challenge

The MALDI Biotyper has revolutionized the identification of microorganisms within the past decade, setting new standards in speed, ease of use, reliability and costeffectiveness. But even in these advanced times of microbial mass spectrometry, the identification of molds and multicellular fungi still persists as one of the most challenging aspects of microbiology. This can be mainly attributed to the effects of culture conditions.

To facilitate the identification of these microorganisms, Bruker has developed a cultivation method for the creation of reference spectra for the MBT Filamentous Fungi Library, and a standard three-step workflow for identification.

Standardized liquid cultivation for the creation of the reference library

In order to reduce the effects of culture conditions on the mass spectrum and to aid in the production of a uniform mycelium, a liquid based cultivation method has been developed which standardizes the physiological status. This method has been used to create the MBT Filamentous Fungi library and is recommended where quick identification using front mycelium is not possible.

To create the reference library, tubes with liquid medium have been inoculated with the fungi and placed on a rotator to incubate overnight or until enough biological material was observed. Using the standardized liquid cultivation method prevents the germination process and the formation of spores, which, in turn, permits the creation of reproducible library entries.

Identification of filamentous fungi by isolation of their mycelium enables fast and reliable species identification.

Daily Routine Workflow – Analysis Possible Directly from Agar

If front mycelium is clearly visible, as in this example, and can be harvested, then it is possible to sample directly from the agar and start with the simple direct transfer method / extended direct transfer method. Eventually, the extraction method can be used to obtain better results. Usually, good results can be obtained for most of the samples without the need for liquid cultivation.

In cases where direct harvesting is difficult, the liquid cultivation method should be used.

Top spectrum is achieved after liquid cultivation, the bottom spectrum is achieved by direct harvesting from agar. The image shows that the "front mycelium" is clearly visible and can easily be harvested.

A three-step workflow for identification; covering the diversity of filamentous fungi

The fastest identification procedures are the Direct Transfer (DT) and the extended Direct Transfer (eDT) Method, which can conveniently be used in parallel for molds grown on agar plates. These procedures can be used in the majority of the cases if front mycelium is available for harvesting. In case DT / eDT procedures fail to give an identification, as a second option the Extraction (Ext) Method can be used, starting from the same front mycelium.

As a further option the so-called "Liquid Cultivation" can be used for filamentous fungi identification. One big advantage of this method is the ability to identify filamentous fungi strains which cannot be harvested from agar plates, due to a solid surface of the fungi or due to their strong adherence to the agar.

Growth in liquid medium is usually very fast and produces biological material in a standardized physiological status after overnight cultivation. The Liquid Cultivation in combination with protein extraction has also been applied to create the MBT Filamentous Fungi library, which can be used for identification after all mentioned sample preparation techniques (DT / eDT / Ext / Liquid Cultivation), since all generated spectra are compatible with the reference spectra.

More than a library

The MBT Filamentous Fungi Suite combines a comprehensive library with an optimized software module, including adapted thresholds for identification of Filamentous Fungi.

Optimized data acquisition and analysis contributes to a high identification success rate.

Easy selection of the sample type during sample preparation for optimized data acquisition and analysis

Prof. Dr. med H. Hof, Mycology Lab, Laboratory of Limbach Heidelberg, Germany

"The identification of multicellular fungi to the species level is one of the most challenging tasks of many microbiological laboratories in medicine, hygiene as well as food industries. In cooperation with Bruker's dedicated microbiology team we

worked as part of an international group of fungi experts on the identification of filamentous fungi using the MALDI Biotyper approach.

Based on Bruker's existing development on fungi sample preparation procedure, we contributed, established and validated a reference library of a large panel of the most important fungal strains. Our common efforts during the last years have shown that MALDI-TOF based molecular fingerprints of filamentous fungi provide a high differentiation power both at species and strain level.

The analytical performance of the MALDI Biotyper when used with the Filamentous Fungi library is a major technological breakthrough and practical improvement when compared to more conventional approaches and technologies using microscopy and sequencing methods only."

MBT Filamentous Fungi Library

The MBT Filamentous Fungi Library 3.0 covers 180 species / species groups, additionally 10 strains can be identified at genus level. Contributions to this library have been received from 26 laboratories across 10 countries.

180 species / species groups		
Absidia caerulea	Aspergillus parasiticus	Curvularia clavata
Absidia glauca	Aspergillus penicillioides	Curvularia lunata
Acaulium acremonium	Aspergillus pseudoglaucus	Curvularia pallescens
Acremonium cereale	Aspergillus pulvinus	Curvularia verruculosa
Alternaria alternata	Aspergillus ruber	Dichotomopilus funicola
Arthrinium arundinis	Aspergillus sclerotiorum	Didymella aurea
Arthrinium phaeospermum	Aspergillus sp[4]	Epicoccum nigrum
Arthroderma amazonicum	Aspergillus sydowii	Epicoccum sorghinum
Arthroderma cuniculi	Aspergillus tamarii	Epidermophyton floccosum
Arthroderma eboreum	Aspergillus terreus	Exophiala dermatitidis
Arthroderma flavescens	Aspergillus tritici	Fusarium aquaeductuum
Arthroderma gertleri	Aspergillus unguis	Fusarium aveanceum
Arthroderma gloriae	Aspergillus ustus	Fusarium cerealis_culmorum_group
Arthroderma insingulare	Aspergillus versicolor	Fusarium chlamydosporum
Arthroderma lenticulare	Aspergillus westerdijkiae	Fusarium delphinoides
Arthroderma melis	Aureobasidium melanogenum	Fusarium dimerum
Arthroderma multifidum	Aureobasidium pullulans	Fusarium equiseti
Arthrographis kalrae	Beauveria bassiana	Fusarium graminearum
Aspergillus brasiliensis	Botrytis cinerea	Fusarium incarnatum
Aspergillus calidoustus	Byssochlamys fulva	Fusarium oxysporum
Aspergillus clavatus	Byssochlamys lagunculariae	Fusarium petroliphilum
Aspergillus flavus_oryzae_group	Byssochlamys nivea	Fusarium poae
Aspergillus fumigatus	Byssochlamys spectabilis	Fusarium proliferatum
Aspergillus glaucus	Chaetomium globosum	Fusarium solani
Aspergillus iizukae	Chrysosporium keratinophilum	<i>Fusarium</i> sp
Aspergillus japonicus	Chrysosporium shanxiense	Fusarium sporotrichioides
Aspergillus lentulus	Cladosporium cladosporioides	Fusarium verticillioides
Aspergillus minisclerotigenes	Cladosporium herbarum	Isaria farinosa
Aspergillus montevidensis	Cladosporium sp	Lasiodiplodia sp
Aspergillus nidulans	Cladosporium sphaerospermum	Lichtheimia corymbifera
Aspergillus niger	Coniochaeta hoffmannii	Lomentospora prolificans
Aspergillus nomius	Coniochaeta mutabilis	Metarhizium marquandii
Aspergillus ochraceus	Cunninghamella elegans	Microascus melanosporus

180 species / species groups

	Microsporum canis	Penicillium digitatum
	Monascus ruber	Penicillium expansum
	Monilinia laxa	Penicillium fellutanum
	Mortierella acrotona	Penicillium glabrum
	Mortierella clonocystis	Penicillium italicum
	Mortierella gamsii	Penicillium menonorum
	Mortierella polygonia	Penicillium nalgiovense
	Mucor circinelloides	Penicillium namyslowskii
	Mucor genevensis	Penicillium olsonii
	Mucor hiemalis	Penicillium onobense
	Mucor indicus	Penicillium oxalicum
	Mucor lanceolatus	Penicillium pimiteouse
	Mucor moelleri	Penicillium roqueforti
	Mucor racemosus	Penicillium singorense
	Nannizzia fulva	Penicillium sp[2]
	Nannizzia gypsea	Penicillium sp[6]
	Nannizzia incurvata	Penicillium turbatum
	Nannizzia persicolor	Penicillium verrucosum
	Nannizzia praecox	Phaeoacremonium cinereum
	Neoscytalidium hyalinum	Phialemoniopsis curvata
	Paraphyton cookei	Phoma herbarum
	Penicillium aurantiogriseum	Plectosphaerella cucumerina
	Penicillium brevicompactum	Pseudogymnoascus pannorum
	Penicillium camemberti	Purpureocillium lilacinum
	Penicillium chrysogenum	Rasamsonia argillacea
	Penicillium citreonigrum	Rhizomucor pusillus
	Penicillium citrinum	Rhizopus microsporus
	Penicillium commune	Rhizopus oryzae
	Penicillium corylophilum	Rhizopus sexualis
	Penicillium crustosum	Rhizopus stolonifer

Sarocladium kiliense Sarocladium strictum Scedosporium apiospermum Scedosporium aurantiacum Scedosporium dehoogii Scedosporium prolificans Schizophyllum commune Scopulariopsis brevicaulis Scytalidium lignicola Scytalidium sp Sporothrix schenckii Stachybotrys chartarum Syncephalastrum racemosum Talaromyces pseudostromaticus Talaromyces ruber Talaromyces rugulosus Talaromyces sp Thanatephorus cucumeris Trichoderma hamatum Trichoderma longibrachiatum Trichoderma orientale Trichoderma sp[3] Trichophyton benhamiae Trichophyton equinum Trichophyton erinacei Trichophyton interdigitale Trichophyton rubrum Trichophyton tonsurans Trichophyton violaceum Trichurus sp

Boost your results by Id-Fungi Plates[™]

Id-Fungi Plates[™] are an innovative solution allowing the selective growth of molds, yeasts and dermatophytes for MALDI-TOF analysis, on a specific culture medium with an optimized composition and pH. Its unique membrane limits the contact of the sample with the agar and makes sampling much easier, resulting in generation of better-quality MALDI-TOF spectra and an increased success rate of identified samples.

Aspergillus flavus grown on an Id-Fungi Plate™

Order Information

Part No. 1867813

MBT Filamentous Fungi Suite

Consists of the MBT Filamentous Fungi Library and license for the MBT Filamentous Fungi software module. Prerequisite for the use of the module is the MBT Compass RUO software.

Id-Fungi Plates[™] are manufactured by Conidia SAS – France.

Please contact your local representative for availability in your country. MALDI Biotyper® is a registered trademark of Bruker Corporation in the European Union and the USA.

🕍 Bruker Daltonik GmbH

Bruker Scientific LLC

Bremen · Germany Phone +49 (0) 421-2205-0 Billerica, MA · USA Phone +1 (978) 663-3660

ms.sales.bdal@bruker.com - www.bruker.com/microbiology