原子力显微镜

石墨烯和2D材料bob综合游戏

Bruker AFMS启用高级财产测量和其他2D材料bob综合游戏

自从Geim和Novoselov的诺贝尔奖获得奖励以来,原子力显微镜就可以探测单个石墨烯薄片,为原子水平提供纳米级细节,因此一直是石墨烯研究的一部分。早期的tappingmode图像,用布鲁克多模®AFMat locations pinpointed by an optical survey, unambiguously identified the single graphene layers that had previously been thought to be inaccessible.

这一发现之后交货plosion of graphene research activity, with well over 100 publications using Bruker AFMs. These studies include investigations into the fabrication of graphene and graphene oxide, where consistent product purity and known, low defect density are a key challenge, especially for scalable graphene production. They also address the wide ranging applications envisioned for graphene, from flexible displays and fast electronics to actuators, biosensors, and composites. Researchers at nearly every leading graphene research center are also using ourDimension XR,,,,尺寸快速扫描®尺寸图标®在石墨烯和其他2D材料中推动其研究的系统。bob综合游戏

石墨烯诺贝尔奖获得者使用Bruker MultiMode的NBSE2(A)和石墨烯(B)的TappingMode图像(B)。揭示了这些2D材料的存在,分层和吸附物覆盖距离。bob综合游戏来自K. S. Novoselov,D。Jiang,F。Schedin,T。J. Booth,V。V. Khotkevich,S。V. Morozov和A. K. Geim,美国美国国家科学院美国国家科学院的论文集102,10451(2005年)。版权所有(2005年),美国国家科学院

高级财产测量

Advanced property measurements have played a key role in the exciting AFM discoveries in graphene research. This research includes quantitative mechanical property mapping with Bruker’s exclusivePeakforce QNM®如Chu等人(J. Procedia Eng 36,571(2012)用于拆卸石墨烯分层和Lazar等人(J. ACS Nano ASAP 2013),用于量化电气设备应用中电极键合的石墨烯金属相互作用。示例是对复合材料的纳米级电导率研究(Bhaskar等,J。Power Sounces 216,169,2012)和功能化石墨烯(Felten等,Small 9(4),631,2013)以及KPFM研究澄清优化的氧化石墨烯 - 有机杂交FET设备中的电荷渗透途径(Liscio等,J。材料化学21,2924,2011)。bob综合游戏

石墨烯在六角形硼硝基上的峰值QNM模量图像,揭示了与高度局部应变释放对齐后向相应晶格的过渡。

推进未来研究的能力

最新的布鲁克技术有望将更加激动人心的进步。PeakForce KPFM™可以允许将混合装置的研究扩展到更高的空间分辨率,更定量的测量以及与局部材料变化的相关性,这些变化可以在同时的机械性能映射中揭示。未来的电导率研究可能会受益于可靠的能力Peakforce Tuna™to provide the highest spatial resolution on the most mechanically fragile samples. The investigation of defects in the 2D material graphene might be enriched by further PeakForce QNM studies, as this mode has been shown on 3D crystals to open the door to property mapping with atomic defect resolution.

在HOPG上以金枪鱼模式产生的当前地图显示“晶格分辨率”,间距为0.25nm。